Statistical analysis of immuno-functionalized tumor-cell behaviors on nanopatterned substrates

نویسندگان

  • Dong-Joo Kim
  • Geehee Lee
  • Gil-Sung Kim
  • Sang-Kwon Lee
چکیده

Laser scanning cytometry has been proven as a powerful technology for high-content, high-throughput quantitative analysis of cellular functions in a fully automated manner. It utilizes a large-area fluorescence imaging scheme and rigorous image quantitation algorithms to enable informative analysis of cell samples attached to solid substrates. While this technology represents a powerful approach for high-content screening using cell lines, it has not been applied to the study of tumor-cell behaviors on these solid nanopatterned substrates after several hours of incubation. Herein, we statistically demonstrated functional cellular morphology information, including size, shape, and distribution of the captured cells after 0.5 to 45 h of incubation on nanopatterned substrates, such as silicon nanowires and quartz nanopillars, along with planar glass substrates. With increasing incubation time up to 45 h, we observed that the nanopatterned substrates could have not only increased adhesion and traction forces between cells and nanopatterned substrates, but also limited cell spreading on the substrates compared to the planar glass substrates. On the basis of our results, we suggest that the most important factors to influence the cell behaviors on the three solid substrates are the degree of dimension on cell behaviors and cell traction force.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly Efficient Transfection of Dendritic Cells Derived from Esophageal Squamous Cell Carcinoma Patient: Optimization with Green Fluorescent Protein and Validation with Tumor RNA as a Tool for Immuno-genetherapy

This study was conducted to optimize a highly efficient mRNA transfection into dendritic cells (DC) derived from esophageal squamous cell carcinoma (ESCC) patients. Applying an electroporation technique, in vitro synthesized Green Fluorescent Protein (GFP) mRNA was transfected as an indicator into the DCs derived from a healthy donor. Flow cytometry revealed 84.9% transfection efficiency for DC...

متن کامل

Leydig cell tumor in ovary of a German Shepherd bitch: An immunohistopathological study

Leydig cell tumor as a sex-cord stromal tumor is a relatively uncommon ovarian tumorin bitch. A 10-year-old female German Shepherd dog was presented because of protrusion of a large tumor-like mass of 16 × 14 × 7 cm in dimensions from her vagina. After stabilization of the patient, the mass was removed surgically and concurrent ovariohysterectomy was also performed. Macroscopically, the healthy...

متن کامل

Characterization of Tumor Cells Using a Medical Wire for Capturing Circulating Tumor Cells: A 3D Approach Based on Immunofluorescence and DNA FISH

Circulating tumor cells (CTCs) are associated with poor survival in metastatic cancer. Their identification, phenotyping, and genotyping could lead to a better understanding of tumor heterogeneity and thus facilitate the selection of patients for personalized treatment. However, this is hampered because of the rarity of CTCs. We present an innovative approach for sampling a high volume of the p...

متن کامل

Effects of nanopillar array diameter and spacing on cancer cell capture and cell behaviors.

While substrates with nanopillars (NPs) have emerged as promising platforms for isolation of circulating tumor cells (CTCs), the influence of diameter and spacing of NPs on CTC capture is still unclear. In this paper, CTC-capture yield and cell behaviors have been investigated by using antibody functionalized NPs of various diameters (120-1100 nm) and spacings (35-800 nm). The results show a li...

متن کامل

Electroconductive Nanopatterned Substrates for Enhanced Myogenic Differentiation and Maturation.

Electrically conductive materials provide a suitable platform for the in vitro study of excitable cells, such as skeletal muscle cells, due to their inherent conductivity and electroactivity. Here it is demonstrated that bioinspired electroconductive nanopatterned substrates enhance myogenic differentiation and maturation. The topographical cues from the highly aligned collagen bundles that for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012